

Karmaveer Bhaurao Patil University,

Satara

Syllabus for

M. Sc. I Drug Chemistry

Under

Faculty of Science and Technology

(As per NEP 2020)

With effect from Academic Year 2024-2025

Syllabus for M. Sc. I

- 1. Title: Drug Chemistry
- 2. Year of Implementation: June 2024.
- 3. Preamble:

This syllabus is framed to give advanced knowledge of Chemistry (Specialization-Drug Chemistry) to postgraduate students in the first year of two years of M.Sc. degree course. The goal of the syllabus is to make the study of Chemistry in particular Drug Chemistry, interesting and encouraging to the students for higher studies including research. The new syllabus is based on a basic and applied approach with vigor and depth. At the same time precaution is taken to make the syllabus comparable to the syllabi of other universities and the needs of industries and research. The syllabus is prepared after discussion at length with the subject, industrial, and research experts. The units of the syllabus are well-defined, taking into consideration the level and capacity of the students.

4. General objectives of the course:

- 1. To educate and prepare postgraduate students will get employment on a large scale in academics, Research & Development, departments of New chemical entities synthesis, drug delivery systems, Quality control of various multinational chemical/pharmaceutical industries.
- 2. To provide students with a broad theoretical and applied background in Chemistry with the specialization of Drug Chemistry.
- 3. To provide broad common framework of syllabus to expose our graduates to the recent and applied knowledge of interdisciplinary branches of chemistry.
- 4. Encourage students to conduct various academic activities involves midterm tests, online tests, open book tests, tutorial, surprise test, oral, seminar, assignments and seminar presentation.

5. Learning outcomes:

- 1. A graduate with a Master's degree in Drug Chemistry has in-depth and detailed functional knowledge of the fundamental theoretical concepts in experimental methods required in Pharmaceutical industry.
- 2. The post-graduate has expert knowledge of a well-defined area of research with in drug chemistry. The postgraduate has specific skills in planning and conducting advanced drug chemistry related experiments and applying structural-chemical characterization techniques for characterization for synthesized compounds. Skilled in examining specific phenomena theoretically and/or experimentally, the postgraduate is able to contribute to the generation of new scientific insights or to the innovation of new applications of drug design & research.
- 6. Duration: Two Year
- 7. Pattern: Semester Examination
- 8. Medium of Instruction: English

Structure of the Course Credit Distribution

			Ma	jor					
Level	Sem	DSC Man	datory	DSE El	ective	RM	OJT	RP	Total
		Т	Р	Т	Р				
	Ι	12	2	2 (1 Daman	2	4	_	-	22
6		(3 Papers)		(1 Paper out of 2)					
	II	12 (3 Papers)	2	2 (1 Paper	2	-	-	4	22
				out of 2)					
65	III	12 (3 Papers)	2	2 (1 Paper	_	-	_	6	22
6.5		_		out of 2)					
	IV	12 (3 Papers)	2	2 (1 Paper	2	-	4	-	22
				out of 2)					
Total		48	8	8	6	4	4	10	88
			7	0		8		10	88

DSC: Discipline Specific Course; DSE: Discipline Specific Elective; RM: Research Methodology; OJT: On Job Training; RP: Research Project; T: Theory; P: Practical

Semester I

Nature of Course	Course Code	Course Title	No. of Hours per week	Credits
	MDCT 411	Introduction to Microbiology	4	4
	MDCT 412	Fundamental Organic Chemistry	4	4
	MDCT 413	Coordination Chemistry	4	4
Theory	MDCT 414 E-I	Basics of Physical Chemistry		
	MDCT414 E-II	Analytical Techniques	2	2
	MDCT 415	Research Methodology	4	4
Practical	MDCP 416	Lab I	4	2
Practical	MDCP 417	Lab II	4	2

Semester II

Nature	Course Code		No. of Hours	Credits
of		Course Title	per week	
Course				
	MDCT 421	Immunology and Virology	4	4
	MDCT 422	Reactive Intermediates And	4	4
		Rearrangements		
Theory	MDCT 423	Bioinorganic Chemistry	4	4
	MDCT 424 E-I	Physico-Chemical Theories &	2	2
		Equations		
	MDCT 424 E-II	Advanced Analytical Techniques		
	MDCP 425	Research Project	4	4
Practical	MDCP 426	Lab III	4	2
Practical	MDCP 427	Lab IV	4	2

Credits 4	M.Sc. I Drug Chemistry Semester I Discipline Specific Course (DSE) Mandatory Paper Title: Introduction to Microbiology (MDCT- 411)	Contact Hours 60
 Learn Study Expla 	ctives: Students should be able to the Structure and functions of cell organelles in microorganisms. the organization of bacterial cells. in the characterization of the microbe's fermentation process. rstand the staining techniques of microbes.	
Unit No.	Content	Contact Hours
Unit I	Basics of Microbiology	12
	 1.1. Introduction and Contributions of Antony Van Leeuwenhoek, Louis Pasteur, Robert Koch, Alexander Fleming, Joseph Lister, Edward Jenner, Paul Ehrlich 1.2. Introduction to Microbiology, Branches of Microbiology, and Classification of Microbes. 1.3. Concept of prokaryotic and eukaryotic microorganisms 1.4. General characteristics of different groups – acellular microorganisms. (Viruses, Viroid's, Prions) and cellular microorganisms. (Bacteria, Archaebacteria, Rickettsia, Algae, Fungi and Protozoa 	
Unit II	Bacterial Cell Organization and Metabolism	13
	 2.1. Morphology – Size, shape, Arrangement 2.2. Cytology- Structure, chemical composition, and functions of: a) Cell wall- Gram positive & Gram negative Bacteria b) Cell membrane, Mesosomes. c) Capsule, slime layer. d) Surface appendages – flagella, pili. 2.3. Metabolism: Definition of Metabolism, catabolism, anabolism, aerobic respiration, anaerobic respiration, and fermentation 2.4. Concept of free energy, High-energy compounds. 2.5. Sugar degradation pathways (i.e. EMP, TCA cycle.) 2.6. Electron transport chain: components of respiratory chain 	
Unit III	Microbial Growth Kinetics	15
	 3.1 Growth curve of bacteria, Measurement of microbial growth, The influence of environmental factors in growth, Synchronous growth, Continuous growth, Extremophiles their molecular adaptations, and significance Molecular weight of a polymer (Number and mass average) 3.2 Characterization and Screening of Microbes fermentation process, 3.3 Isolation and Improvement of individual micro- organism, fermenter designing, Media Designing, antimicrobial assays 3.4 Down Stream process and effluent treatment (Microbial 	

	and Chemical)	
Unit IV	Microscopy, Staining Techniques, and Control of Microbes	20
	4.1. Introduction to microscopy and types of microscope:	
	A) Light Microscope – Parts, image formation,	
	magnification, numerical aperture (uses of oil immersion	
	objective) resolving power and working distance, Ray	
	diagram and applications.	
	B) Electron Microscope– Types, parts, principle of image	
	formation, ray diagram and applications of scanning	
	electron microscope	
	4.2. Staining techniquesa) Definition of dye and stain	
	b) Classification of stain – acidic, basic and neutral	
	c) Common staining techniques- Principle, procedure,	
	mechanism and application of simple staining, negative	
	staining, differential staining- Gram staining	
	4.3. Control of Microbes	
	a) Definitions of sterilization, disinfection & sanitization.	
	b) Physical agents of control of microorganisms-	
	temperature (Tyndallisation, dry heat, moist heat). Filtration	
	(asbestos and membrane filter), Radiations.	
	c) Chemical agents for control of microorganisms- mode of	
	action, applications and advantages of- i) Phenol and	
	phenolic compound. ii) Alcohol (Ethyl alcohol) iii) Halogen	
	compounds (Chlorine and Iodine) iv) Heavy metal (Cu and	
	Hg)	
Course outc	omes: After completion of the course students will be able to	
1. Analy	yze the classification of microbes.	
	rentiate the metabolism of bacterial cells.	
	in the isolation of individual micro-organisms.	
4. Explo	ore the types of microscopes.	
References:		
	Pommerville, 2014, Fundamental of Microbiology, 10 th edition, Jones	s & Bartie
1	cation.	
	McMilan, McMilan, London, 2001, General Microbiology.	
	nanthnarayan, C.E. Jayaram Panikar, 1996, Text book of Microl	biology, 5
editio		
	⁷ , Madigan, 2017, Brock Biology of Microorganism, 14 th edition	on, Pearso
	cation. Singh 2010, Immunology & Medical Microbiology 2 nd editic	n Value
	, Singh, 2010, Immunology & Medical Microbiology, 2 nd edition	m, Kaiyai
Publi	cation.	

Credits 4	M.Sc. I Drug Chemistry Semester I Discipline Specific Course (DSC) Mandatory Paper Title: Fundamental Organic Chemistry (MDCT- 412)	Contact Hours 60
	ectives: Students should be able to	
1. Lea	rn structure and reactivity concepts of organic chemistry.	
2. Stud	ly classification & nomenclature of stereoisomers.	
3. Lea	rn the key concepts of leaving groups, nucleophiles & electrophiles.	
4. Gai	n a comprehensive knowledge of the basic principle of addition & e	liminatior
reac	tion.	
Unit No.	Content	Contact
	Content	Hours
Unit I	Basics in Organic Chemistry	15
	1.1 Structure and reactivity	
	1.1.1 Electrophile,	
	1.1.2 Nucleophile,	
	1.1.3 Delocalization,	
	1.1.4 Conjugation,	
	1.1.5 Resonance,	
	1.1.6 Hyper conjugation,	
	1.1.7 Tautomerism,	
	1.1.8 Inductive effects.	
	1.2 Acidity and basicity:	
	1.2.1 Various Structural Effects	
	1.2.2 Hard and soft acid and base concept	
	1.3 Nomenclature:	
	IUPAC system of nomenclature for	
	1.3.1 Alkanes,	
	1.3.2 Alkenes,	
	1.3.3 Alkynes,	
	1.3.4 Cyclic compounds,	
	1.3.5 Aromatic compounds1.3.6 Common names for simple organic compounds	
	1.4 Aromaticity	
	1.4.1 Structural, thermochemical, and magnetic criteria for	
	aromaticity, including NMR characteristics of aromatic systems.	
	1.4.2 Benzenoid and non-benzenoid compounds, Huckels rule,	
	antiaromaticity, Application to carbocyclic and heterocyclic	
	systems, nulenes, azulenes, tropylium cations, metallocenes, and	
	current concepts of aromaticity.	
Unit II	Stereochemistry of Alkanes & Cycloalkanes	15
	2.1 Isomerism & Conformational Isomerism	
	2.1.1 Structural isomerism: chain, positional, and functional group	
	isomerism Stereoisomerism: geometric (cis-trans) and optical	
	isomerism	
	2.1.2 Eclipsed conformations & Staggered Conformations	

	 2.1.3 Gauche conformations 2.1.4 Anti-conformations 2.2 Newman Projections 2.3 Substituted cycloalkanes 2.3.1 Monostustituted cycloalkanes e.g. methyl cyclohexane 2.3.2 Disubstituted cycloalkanes e.g. Dimethyl cyclohexane 2.3.4 Polysubstituted cycloalkanes e.g. 1,2,3 Trimethyl cyclohexane 2.4 Chirality in alkanes e.g. Ethane, Butanes, Cycloalkanes 2.5 Topicity- Homotopic, enantiotropic, and diastereotopic ligands and faces with Examples, Diastereoisomerism in Acyclic and Cyclic systems. 2.6 Axial and planar chirality: Principles of axial and planar chirality. 2.7 Prochirality: 2.7.1 Homotopic, heterotopic, and diastereotopic ligands and faces. 2.7.2 Identification using substitution and symmetry criteria. 	
	 2.7.3 Nomenclature of stereo heterotopic ligands and faces. 2.7.4 Symbols for stereo heterotopic ligands in molecules with one or more parochial centers, pro-pseudo asymmetric center, chiral and parochial center; prochiral axis and prochiral plane. 2.7.5 Symbols for enantiotopic and diastereotopic faces 	
Unit III	Nucleophilic & Electrophilic Substitutions	15
	 3.1. SN², SN¹ & SN_i reactions concerning mechanism and stereochemistry. 3.2. Nucleophilic substitutions at an allylic, aliphatic trigonal, benzylic, aryl, and vinyl carbons. 3.3. Reactivity effect of substrate structure, 3.4. the effect of attacking nucleophiles, 2.5. Leaving groups and reaction medium. 	
	 3.5. Leaving groups, and reaction medium. 3.6. SN reactions at bridgehead carbon, competition between SN¹ and SN², 3.7. Ambient nucleophiles, 3.8. Neighboring Group Participation. 3.9. Introduction, the arenium ion mechanism, orientation. 3.10. Reactivity in Nitration, Sulphonation, Friedel-Crafts and 3.11. Halogenation in aromatic systems, energy profile diagrams. 3.12. The ortho/para ratio, ipso attack, concept of aromaticity, and orientation in their ring systems. 3.13. Diazo-coupling, 3.14. Vilsmeier-reaction, 	
	 3.6. SN reactions at bridgehead carbon, competition between SN¹ and SN², 3.7. Ambient nucleophiles, 3.8. Neighboring Group Participation. 3.9. Introduction, the arenium ion mechanism, orientation. 3.10. Reactivity in Nitration, Sulphonation, Friedel-Crafts and 3.11. Halogenation in aromatic systems, energy profile diagrams. 3.12. The ortho/para ratio, ipso attack, concept of aromaticity, and orientation in their ring systems. 3.13. Diazo-coupling, 3.14. Vilsmeier-reaction, 3.15. Von-Richter rearrangement. 	17
Unit IV	 3.6. SN reactions at bridgehead carbon, competition between SN¹ and SN², 3.7. Ambient nucleophiles, 3.8. Neighboring Group Participation. 3.9. Introduction, the arenium ion mechanism, orientation. 3.10. Reactivity in Nitration, Sulphonation, Friedel-Crafts and 3.11. Halogenation in aromatic systems, energy profile diagrams. 3.12. The ortho/para ratio, ipso attack, concept of aromaticity, and orientation in their ring systems. 3.13. Diazo-coupling, 3.14. Vilsmeier-reaction, 3.15. Von-Richter rearrangement. 	15
Unit IV	 3.6. SN reactions at bridgehead carbon, competition between SN¹ and SN², 3.7. Ambient nucleophiles, 3.8. Neighboring Group Participation. 3.9. Introduction, the arenium ion mechanism, orientation. 3.10. Reactivity in Nitration, Sulphonation, Friedel-Crafts and 3.11. Halogenation in aromatic systems, energy profile diagrams. 3.12. The ortho/para ratio, ipso attack, concept of aromaticity, and orientation in their ring systems. 3.13. Diazo-coupling, 3.14. Vilsmeier-reaction, 3.15. Von-Richter rearrangement. 	15

	4.5 Nucleophilic addition to carbonyl compounds (Aldehyde &
	Ketones)
	4.6 Nucleophilic addition to the carbonyl carbon of a
	carboxylic acid derivative.
	4.7 Radical additions to Alkenes.
	4.8 Nucleophilic attack on Carbon Nitrogen triple bond.
	4.9 Electrophile, nucleophile, and free radicals,
	Elimination Reaction
	4.10 Introduction of Elimination Reactions
	4.11 The Unimolecular mechanism for elimination.
	4.12 The bimolecular mechanism for elimination.
	4.13 Pyrolytic syn elimination -Ei-elimination internal.4.14 Orientation in Elimination Reactions.
	4.15 Hoffman Versus Saytzeff elimination,4.16 Reactivity
	4.17 Effects of substrate structures,
	4.18 Attacking base, leaving group,
	4.19 The nature of medium on elimination reactions.
	4.20 Chugaev reaction
	1.20 Chuguev reaction
Course o	outcomes: After completion of the course students will be able to
1. A	analyse the relationship between structure and reactivity of organic compounds.
	Differentiate between configuration and conformation of molecules.
	xplain factors influencing the mechanism of substitution reactions.
4. E	xplore mechanisms and pathways of addition & elimination reactions.
Reference	
1. J	. Clayden, N. Greeves, S. Warren, 2002, Organic chemistry 6 th edition, Oxford
	iniversity, Press.
	D. Nasipuri, 1994, Stereochemistry of organic compounds, New Delhi, New ag
	international.
3. N	March. J, 2007, Advanced Organic chemistry, 6 th edition, McGraw Hill.
	Sykes. Peter, 1985, Guide book to mechanism in organic chemistry 6 th edition, US prients Longmans.
	Morrisons R T & Boyd R N 2002 Organic chemistry 7 th edition Prentice Hal

- 5. Morrisons. R. T, & Boyd. R. N, 2002, Organic chemistry 7th edition, Prentice Hall Ashok Kghosh.
- 6. Eliel. E. L, 1962, Stereochemistry of carbon compounds, 1st edition, McGraw hill.

Credits 4	M.Sc. I Drug Chemistry Semester I Discipline Specific Course (DSC) Mandatory Paper Title: Coordination Chemistry (MDCT- 413)	Contact Hours 60
1. St co 2. Ui 3. Le	jectives: Students should be able to udy the therapeutics application & mechanism of action of co- ompound in medicine. Inderstand the role of coordination chemistry in catalysis & enzymatic pro- earn the role of the contribution of chemistry in the development of new re- ecognize the applications of organometallic compounds.	ocesses.
Unit No.	Content	Contact hours
Unit I	Introduction to Coordination Chemistry	15
	 1.1. Transition elements, Structure bonding theories, Spectra, Magnetic Properties, atomic radii, ionic radii, hydration energy, Ionization Energy, Electronegativity, Electrode Potential, Oxidation States; Stability of various Oxidation States for Mn, Fe, and Cu; stereochemistry of coordination compounds, 1.2. Constitution and Geometry 1.3. Isomerism and chirality 1.4. Thermodynamics of complex formation 1.5. Molecular Orbital Theory of octahedral complexes with sigma bonding 1.6. Study of Lanthanides and Actinides: Introduction, Electronic configuration, transition spectra, spin-orbital, spin multiplicity, spin-spin orbital coupling 	
Unit II	Coordination Compound I	15
	 2.1. Crystal Field Theory: Octahedral Complexes; Splitting of Orbitals an Octahedral Field 2.2. Spectrochemical Series, Crystal Field Stabilization Energy, Weak and Strong Field Complexes, Pairing Energies, Low Spin and High Spin Complexes 2.3. John Teller Effect; Tetrahedral and Square Planar Complexes, Magnetic Properties. Of Crystal Field Theory; Lattice Energies, Ionic Radii 2.4. Thermodynamic and Related Aspects of Crystal Fields, Heats of Ligation, Site Preference Energies 2.5. Limitation of Crystal Field Theory 2.6. Molecular Orbital Theory, Nephelauxetic Effect; Pi-Bonding and Molecular Orbital Theory, Orbital contribution of ligand complexes, ligand field theory 	
Unit III	Coordination Compound II	15
	 3.1 Ligand field theory of coordination complexes: Effect of ligand field on the energy level of transition metal ions 3.2 Energy level of transition metal ions, free ion terms, microstates, 	10

	 term wave functions 3.3 Quantum numbers, spin-orbits coupling strong field effect, Orgel diagram, correlation diagrams, Tanabe Sugano diagrams, spin pairing energies. 3.4 Coordination chemistry reactions of complexes: Oxidative 	
	addition reaction, substitution reactions, Group transfer reactions, Elimination reactions	
Unit IV	Organometallic Chemistry	15
	 4.1. Introduction to Sigma complexes and π complexes: Synthesis, bonding, properties and applications. 4.2. Metal-Carbon multiple bonded compounds Carbene and Carbynes: Synthesis, bonding, properties and applications 4.3. Metal Carbonyls: Isoelectric and Isolable Analogy, 4.4. Carbocyclic Polyenes: Synthesis, bonding, properties and applications. 4.5. Fluxional Behavior of organometallic compounds and study of organometallic compounds by NMR, IR. 4.6. Phosphine complexes: Synthesis, bonding, properties, and applications. 4.7. Metal-Metal Bonds: Transition metal atom clusters and cages. 4.8. Roll of transition metal organometallics in organic synthesis: As electrophiles and nucleophiles, Activating agents and protecting agents 4.9. Eighteen electron Rule applications and Exceptions. 4.10. Reactions of organometallic compounds Oxidative addition, Reductive elimination, Insertion and elimination 	
C		
1. Dev coo 2. For coo 3. Ana	terms: After completion of the course students will be able to velop the ability to evaluate scientific literature and research finordination chemistry critically. crmulate a hypothesis and design experiments to test this hypothesis in a bordination chemistry. alyse the electronic structure of coordination compounds in MOT & CFT acuss the 18-electron rule of metal complexes.	contest o
Reference	•	
 Dat Pre Shr Cot pub Ino 	• tta. R. L, & Syamal, 2007, Elements of magneto chemistry, 2 nd edition ess Private Limited. ess Private Limited. ever and Atkins Inorganic chemistry, Fifth edition, Oxford, 2010. etton. A, Wilkinson's. R. G, 2021, Advanced Inorganic chemistre plication. erganic chemistry by Gary L. Miessler and Paul J, Fischer. etls F. 1984, Structural Inorganic chemistry Oxford University, Press.	

Credits 2	M.Sc. I Drug Chemistry Semester I Discipline Specific Elective (DSE) Elective Paper Title: Basics of Physical Chemistry (MDCT- 414 E- I)	Contact Hours 30
Course ob	jectives: Students should be able to	
	derstand the kinetics behind chemical reactions.	
. –		
	idy the thermodynamics.	
	arn the different types of catalysts.	
4. Ac	quire knowledge of thermodynamic properties.	
Unit No.	Content	Contact hours
Unit I	Chemical Kinetics I	7
	 1.1. Introduction to Chemical kinetics, Experimental methods of following kinetics of a reaction, chemical and physical (measurement of pressure, volume, EMF, conductance, diffusion current, and absorbance) methods and examples. 1.2. Elementary reaction kinetics-Rate laws for elementary reactions, rate-determining steps, collision theory and transition state theory 1.3. Steady-state approximation and study of the reaction between NO₂ and F₂, decomposition of ozone, and nitrogen pentoxide. 	
Unit II	Chemical Kinetics II	8
	 2.1. Ionic reaction: Primary and secondary salt effect 2.2. Homogeneous catalysis: acid and base catalyzed reactions Michaelis–Menten enzyme catalysis 2.3. Heterogeneous catalysis: Adsorption of gas on a surface and its kinetics. 2.4. Catalyzed hydrogen-deuterium exchange reaction. 	
Unit III	Thermal Reactions I	7
	 3.1. Introduction: revision of basic concepts: Entropy and third law of thermodynamics 3.2. Methods of determining the practical absolute entropies, Entropies of phase transition, Maxwell relations and its applications. 3.3. Thermodynamic equation of state, Ideal and non-ideal solutions. 3.4. Thermodynamics of non-electrolyte solutions. 	
Unit IV	Thermal Reactions II	8
	 4.1 Raoult's law 4.2 Duhem-Margules equation and its applications to vapor pressure curves (Binary liquid mixture) 4.3 Gibbs-Duhem equation and its applications to the study of partial molar quantities 4.4 Chemical potential, variation of chemical potential with 	

temperature & pressure in terms of thermodynamic potentials

- 4.5 Numerical Problem
- 4.6 Henry's law
- 4.7 Excess and mixing thermodynamic properties
- 4.8 Equilibrium constants and general conditions of equilibrium

Course outcomes: After completion of the course students should be able to...

- 1. Find the rate-determining step.
- 2. Explain the Gibbs-Duheme equation and its applications in thermal reactions.
- 3. Solve Numerical problems of thermodynamics.
- 4. Apply Gibbs- Duhem equation for partial molar quantities.

- 1. P. W. Atkins, 2002 Physical Chemistry 7th edition –, Oxford University Press.
- 2. S. Glasstone. And Nostrand D. Van. 1965, Textbook of Physical Chemistry
- 3. Srivastava R. C., Saha S. K. and Jain A. K 2004 Thermodynamics, A Core Course. 2nd edition Prentice-Hall of India
- 4. K. J. Laidler, Pearson 2004 Chemical Kinetics
- 5. G. L. Agarwal, Tata-McGraw Hill Basic Chemical Kinetics.

Credits	M.Sc. I Drug Chemistry	Contact
2	Semester I	Hours
	Discipline Specific Elective (DSE) Elective	30
	Paper Title: Analytical Techniques (MDCT- 415 E-II)	
	bjective: Students should be able to	
	derstand different spectroscopic techniques.	
	udy ¹³ C NMR spectroscopy.	
	quire knowledge about mass fragmentation & its rules.	
4. Le	arn factors affecting on separations.	
T T •4 N T		0 1 1
Unit No.	Content	Contact
TT . •4 T		hours
Unit I	Spectroscopic Techniques I	6
	1.1. UV-Visible spectroscopy: Introduction, Theory, Laws,	
	Instrumentation associated with UV-Visible spectroscopy,	
	Choice of solvents and solvent effect, and Applications of UV-	
	Visible spectroscopy.	
	1.2. IR spectroscopy: Theory, Modes of Molecular vibrations, Sample handling, Instrumentation of Dispersive and Fourier -	
	Transform IR Spectrometer, Factors affecting vibrational	
	frequencies, and Applications of IR spectroscopy.	
	nequencies, and Applications of IK spectroscopy.	
Unit II	Spectroscopic Techniques II	6
	2.1. Spectrofluorometric techniques: Theory of Fluorescence,	
	Factors affecting fluorescence, Quenchers, Instrumentation and	
	Applications of Fluorescence Spectrophotometer.	
	2.2. Flame emission spectroscopy: Principle, Instrumentation,	
	Interferences and Applications.	
	2.3. Atomic absorption spectroscopy: Principle, Instrumentation,	
	Interferences and Applications.	
		0
Unit III	NMR Spectroscopy	9
	3.1. NMR spectroscopy: Quantum numbers and their role in NMR,	
	Principle, Instrumentation, Solvent requirement in NMR,	
	Relaxation process,	
	3.2. NMR signals in various compounds, Chemical shift, Factors	
	influencing chemical shift,	
	3.3. Spin-Spin coupling, Coupling constant, Nuclear magnetic double resonance,	
	3.4. A brief outline of principles of FT-NMR and 13 C NMR.	
	Applications of NMR spectroscopy	
	Applications of twink spectroscopy	
Unit IV	Mass Spectroscopy	9
	4.1 Mass Spectroscopy: Principle, Theory, Instrumentation of	
	Mass Spectroscopy.	
	4.2 Different types of ionization include electron impact, chemical,	
	field, FAB and MALDI, APCI, ESI, APPI Analyzers of	
	Quadrupole, and Time of Flight.	
	4.3 Mass fragmentation and its rules, Meta stable ions, Isotopic	
		1

peaks.

4.4 Applications of Mass spectroscopy

Course outcomes: After completion of the course students will be able to

- 1. Analyze applications of IR spectroscopy in spectroscopic techniques.
- 2. Explain the instrumentation of nuclear magnetic resonance spectroscopy.
- 3. Classify different types of ionization like electron impact.
- 4. Acquire the knowledge of application FT NMR.

- 1. Robert M. Silverstein; 2005, Spectrometric identification of organic compounds; 6th edition John Wiley & sons, Inc.
- 2. Jag Mohan; 2004, Organic spectroscopy principles & applications 2nd edn, Norosa publishing houses.
- 3. P.S. Kalsi; 2004, Spectroscopy of organic compounds; 5th Edn, New age international Publishers.
- 4. William Kemp; 2004, Organic Spectroscopy, 3rd edition, Palgrave.
- Donald L. Pavia; Garry M. Lampman; George S. Kirz: 2004, Introduction to spectroscopy, 3rd edition, Harcourt College Publishers.

Credits 4	M.Sc. Drug Chemistry Semester I MDCT-415: Research Methodology (RM)	Contact Hours 60
Course object	tives: Students should be able to	
*	and the idea about need of Research Design.	
	the knowledge for implementation of Sample Survey.	
	prepare and process the data.	
4 Study ab	out Sampling and Non-Sampling Error.	
Unit No.	Content	Contact hours
Unit I	Research Design	15
	1.1. Meaning of Research Design,	
	1.2. Need of Research Design,	
	1.3. Features of Good Design,	
	1.4. Important Concept Relating to Research Design,	
	1.5. Different Research Design,	
	1.6. Basic Principles of Experimental Designs,	
	1.7. Important Experimental Designs.	
Unit II	Design of Sample Surveys	15
	2.1. Introduction, Sample Design,	15
	2.2. Sampling and Non-Sampling Errors,	
	2.3. Sample Survey and Census Survey,	
	2.4. Types of Sampling Designs,	
	2.5. Non-probability Sampling and Probability Sampling	
	2.6. Complex Random sampling designs.	
Unit III	Data Preparation and Process	15
	3.1. Data Preparation Process.	
	3.2. Questionnaire Checking	
	3.3. Editing, Coding, Classification,	
	3.4. Tabulation, Graphical Representation,	
	3.5. Data Cleaning,	
	3.6. Data Adjusting,	
	3.7. Some Problems in Analysis	
	3.8. Measure of Central Tendency,3.9. Measure of Dispersion	
	3.10. Measure of Skewness	
	3.11. Kurtosis	
	Descende Descent and Ethics	15
Unit IV	Research Report and Ethics 4 1 Besearch report and its structure	15
	4.1. Research report and its structure,	
	4.2. Components of journal article.	
	4.3. Explanation of various components.	
	4.4. Structure of components and its importance.	
	4.5. Components of thesis and dissertations.	
	4.6. Referencing styles and bibliography.	

- 4.7. Plagiarism Definition, different forms,
- 4.8. Consequences, unintentional plagiarism,
- 4.9. Copyright infringement, collaborative work.

Course outcomes: After completion of the course students will be able to...

- 1. Classify the research data.
- 2. Explain different types of research.
- 3. Differentiate the complex random sampling.
- 4. Collect data about their research

- 1. Hibbert D. B., Gooding J. J. 2006. Data analysis for chemistry. Oxford University Press.
- 2. Topping J. 1984. Errors of observation and their treatment. Fourth Ed., Chapman Hall, London.
- 3. Harris D. C., 2007. Quantitative chemical analysis. 6th Ed., Freeman.
- 4. Denscombes M., 2010. The Good Research Guide: For small-scale social research projects. Maiden-Read: Open University Press.
- 5. Dornyei Z., 2007. Research Methods in Applied Linguistics. Oxford: Oxford University Press.
- 6. Kothari C. R., 1980. Research Methodology: Research and techniques. New Delhi: New Age International Publishers.
- Kumar R. 2011. Research Methodology: a step-by-step guide for beginners. 3rd edition, London, UK: TJ International Ltd, Padstow, Corwall.
- 8. Chemical safety matters IUPAC IPCS, 1992. Cambridge University Press.

Credits 2	M.Sc. I Drug Chemistry Semester I MDCP 416: Lab L	Contact Hours
4	MDCP-416: Lab I Part A	60
	1. Preparation of cotton plugs for test tubes and flasks,	
	wrapping of plates and pipettes.	
	2. Use, care and study of compound microscope.	
	3. Microscopic Examination of Bacteria by Monochrome	
	staining method	
	4. Microscopic Examination of Bacteria by Negative	
	staining method	
	5. Microscopic Examination of Bacteria by Gram staining	
	6. Study of growth phases and growth curve of bacteria	
	7. Demonstration of working of industrial fermenters by	
	visiting the fermentation industry	
	Part B	
	1. Organic qualitative analysis of binary Mixture (Any 4)	
	2. To perform Assay of aspirin	
	3. To carry out the Assay of furosemide tablets.	
	4. To carry out the Assay of Chlorpromazine.	
	5. To carry out the assay of atropine.	
	6. One stage preparation of 5, 5 - Diphenyl hydentoine.	
	7. One stage preparation of 7-Hydroxy 4-methyl coumarin.	
	8. Aromatic Electrophilic substitutions: Synthesis of p	
	Nitroaniline and p-Bromoaniline.	
	9. To determine the acid value of given oil.	
	10. Beginlli reaction: Micorwave-assisted synthesis of	
	Dihydropyrimidone.	
	11. Estimation of Amino acids.	
eference:		D''1
I. Loud	on, Gregory M., and Josephine I. Davies. 2016, Organic Chemistr	ry Principles
	Aechanisms. 2 nd ed. W.H. Freeman and Company.	tradiente.
	ick, James W. 2019, The Organic Chem lab survival Manual: a Steps to Techniques.10 th ed. Wiley.	ludents
	e, Leroy G. 2017, Organic Chemistry a Laboratory Manual. 8 th ed.	Doorson
	e, David R., and Michael B. Smith. 2014, Organic Chemistry a Laboratory Manual. 8	
	al 3^{rd} ed. University Science Books.	looratory
	s, Daniel C. 2016, Quantitative Chemical Analysis. 9 th ed. New Y	ork: W.H.
Freer	nan and Company.	
	on, Harold J. 2018, Microbiological Applications: Laboratory Ma	nual in
	ral Microbiology. 11 th ed. McGraw-Hill Education.	
	n, Elliot J., and Patricia A. D. Stalons. 2020, Bailey & Scott's Diag	gnostic
	obiology. 14 th ed. Elsevier.	-
	ay, Patrick R., Ken S. Rosenthal, and Michael A. Pfaller. 2020, M	ledical
	obiology. 9 th ed. Elsevier.	
9. Pom	nerville, Jeffrey C. 2019, Alcamo's fundamentals of Microbiology	и: А
Labo	ratory Manual. 11 th ed. Jones & Bartlett Learning.	
10. Capp	uccino, James G., and Natalie Sherman 2022, Microbiology: A La	aboratory
	al. 11 th ed. Pearson.	

Credits 2	M.Sc. I Drug Chemistry Semester I MDCP-417: Lab II	Contact Hours 60
	Part A	
	1. Preparations and purity (any four)	
	i)Potassium trioxalatochromate (III) trihydrate	
	ii) cis-potassium dioxalatodiaqua chromate(III)	
	iii) Potassium hexathiocyanatochromate(III)	
	iv) Bis (dimethyl glyoxylate)nickel(II)	
	v)Carbonatotetramminocobalt(III)nitrate	
	vi)Hexamminocobaltic(III) chloride2. Determination of concentration of phosphates in water	
	samples colorimetrically	
	3. Determination of sodium from the fertilizer sample	
	using cation exchange chromatographically.	
	4. Determination of calcium from the given drug sample.	
	5. Determination of hardness, alkalinity, and salinity of	
	water sample	
	6. Separation and estimation of chloride and bromide on	
	anion exchanger.	
	7. Study of adsorption of phosphate ion on $alfa-Fe_2O_3$	
	8. Removal and kinetics of photo catalytic dyes,	
	degradation (methylene blue) by ZnO or TiO_2 photo	
	catalysis. 0 = Supplies and photo charging of K = [Eq(C, Q, A)] 21 - Q	
	9. Synthesis and photochemistry of $K_3[Fe(C_2O_4)3].3H_2O_10$. Synthesis and Purity of Chloropenta-ammine cobalt	
	(III) chloride.	
	11. Synthesis and Purity of Nitro penta-ammine-cobalt	
	(III) chloride.	
	12. Synthesis and Purity of Bis [Tris Cu (I)thiourea].	
	Part B	
	1. To determine relative strength of chloroacetic acid	
	and acetic acid by conductivity measurement.	
	2. Polarimetry: Kinetics of inversion of cane sugar in the	
	presence of strong acid.	
	3. Chemical Kinetics: Kinetics of reaction between	
	bromate and iodide. 4. to determine molar extension coefficient and unknown	
	4. to determine moral extension coefficient and unknown concentration of given sample colourimetricaly.	
	5. To determine the normality and strength of each acid	
	in the given mixture of strong acid and weak acid	
	conductometrically	
	6. Chemical Kinetics: To determine the relative strengths	
	of 1N hydrochloric acid and N/2 hydrochloric acid.	
	7. Determination of ΔG , ΔH , and ΔS of BaSO ₄ by	
	conductometry.	

- 1. Mann, F. G., and B. C. Saunders. 1960, Practical Organic Chemistry. 4th ed. London: Longmans, Green and Co.
- 2. Clarke, H. T.A 1956, Handbook of Qualitative Analysis and Quantitive Analysis. 6th ed. London: Edward Arnold.
- 3. Blatt, A. Organic Synthesis: Collective Volumes. New York: Wiley, various volumes.
- 4. Kitchener, J. A., 1971, Findlay's Practical Chemistry. 9th ed. London: Macmillan.
- 5. Vogel, A. I. 1961, Textbook of Inorganic Qualitative Analysis. 3rd ed. London: Longmans, Green and Co.
- Das, R. C., and B. Behera. 2002, Experimental Physical Chemistry. 2nd ed. New Delhi: Tata McGraw-Hill.
- 7. Viswanathan, B., and P. S. Raghavan. 2006, Practical Physical Chemistry. 3rd ed. Chennai: New Age International.
- 8. Athawale, V. D., and Parul Mathur. 2004, Experimental Physical Chemistry. 1st ed. Mumbai: Himalaya Publishing House.
- 9. Rajbhoj, S. W., and T. K. Chondhekar. 2008, Systematic Experimental Physical Chemistry. 1st ed. Pune: Vidyarthi Prakashan.
- 10. Palmer, W. G. 1969, Experimental Inorganic Chemistry. 2nd ed. London: Chapman and Hall.
- 11. Schoeller, W. R., and A. R. Powell. 1958, The Analysis of Minerals and ores of the Rarer Elements. London: Charles Griffin and Company Limited.
- Tokushige, M. 1971, Allosteric Regulation: Selected papers in Biochemistry. Vol. 8. Tokyo: University of Tokyo Press.
- 13. Patel, A. H. 1985, Industrial Microbiology. 2nd ed. Madras: Macmillan India Ltd.

Credits 4	M.Sc. I Drug Chemistry Semester II	Contac t Hours
	Discipline Specific Course (DSC) Mandatory	60
	Paper Title: Virology and Immunology (MDCT-421)	
	ectives: Students should be able to	
	ly the structural properties of viruses.	
	tify types of infections.	
	uire the knowledge about immunology.	
4. Lea	rn the concept of modern vaccines & their types.	
Unit No.	Content	Contact
Unit NO.	Content	hours
Unit I	Virology	17
	1.1. Biquitous nature of viruses, Discovery of viruses, the	1/
	Beneficial and harmful nature of viruses.	
	1.2. General properties of viruses.	
	1.3. The Structural properties of viruses: Capsids, Nucleic	
	acids, and envelope.	
	1.4. Structure of T4 bacteriophages, HIV, Viroid, and prions. f)	
	Cultivation of viruses. A) Animal virus - Tissue culture,	
	chick embryo, and live animals g) Purification of viruses	
	based on physicochemical properties:	
	i] Density gradient centrifugation.	
	ii] Precipitation	
	1.5. Replication of viruses: DNA (ds) - Poxvirus, RNA(
	ss+ve)- Poliovirus, RNA (ss -ve) – Influenza virus and	
	RNA with RT- HIV	
	1.6. Antiviral: Mode of Action of various antiviral drugs	
Unit II	Host-Pathogen Interaction	16
	2.1. Definitions: Host, Parasite, Commensal, etiological agent,	
	Infection, Invasion, Pathogen, Pathogenicity, Virulence,	
	Toxigenicity, Signs of disease, symptoms, syndrome,	
	sequelae infections, fomite	
	2.2. Types of Infection: Opportunistic infections, Nosocomial	
	infections, Primary, Reinfection, secondary, Cross,	
	Iatrogenic, In apparent, Latent, Inherited, Congenital, Pyogenic	
	2.3. Disease Process: Portal of Entry and Exit of Organisms	
	Virulence: Adherence, Attachment, colonization,	
	Invasiveness, Enzymes and Toxin produced, Cell structures	
	Viz. Cell wall, Capsule	
	viz. cen wan, capsure	
Unit III	Immunology	15
	3.1. Definition i) Immunity ii) Innate Immunity- Types, factors	
	influencing innate immunity iii) Acquired Immunity –	
	Active & passive	
	3.2. Non-Specific defense mechanisms of the vertebrate body	
	i) First line of defense ii) Second line of defense iii) Third	1

	 line defense mechanism 3.3. Cells of the immune system- Monocytes & macrophages, granulocytes, mast cells, dendritic cells, NK cells, lymphocytes- B & T cells. 3.4. Antigen (Chemical nature, types of antigens, factors affecting antigenicity), Adjuvants. 3.5. Antibody: Nature of antibodies, Types of antibodies – Structure, properties and functions 	
Unit IV	Vaccines	12
1. Exp 2. Gai 3. Dif 4. App	 4.1 Concept and principal requirements of the vaccine. 4.2 Active and passive immunization 4.3 Types of Vaccines a) Conventional Vaccine and their Types 4.4 Live Vaccine, ii) Killed Vaccine with examples. 4.5 Modern Vaccines and their Types: i) Peptide Vaccine, ii) Genetically Engineered Vaccine with examples. tcomes: After completion of the course students will be able to blore the general properties of viruses. n comprehensive knowledge about disease processes. ferentiate non-specific defense mechanisms of the vertebrate body. 	
Reference		
Hills Pu	r, M.J.Jr., Chan E.C.S., Krieq, N.R, 1986, Microbiology, 5 th edition, ablication.	
2. C. V. M edition.	Iosby & Co. London, 1983, Text Book of Immunology, Barret James	5 D 4 th
	upta, Essentials of Immunology	
	gal, S. Sontakke, Textbook of Basic and Clinical Immunology- Unive	ersity Press.
	'iley and Sons, 1978, General Virology- Luria. 013, Virology Principles and Applications, 2 nd Edition Wiley publica	tions.

Credits 4	M.Sc. I Drug Chemistry Semester II Discipline Specific Course (DSC) Mandatory Paper Title: Reactive Intermediates in Reaction Mechanism	Contac t Hours 60
Commercial-	(MDCT-422)	
	jectives: Students should be able to / the reactive intermediate.	
•	bout common oxidizing & reducing agents.	
	he regioselectivity & stereo selectivity of involved in hydroboration.	
-	omprehensive knowledge of organometallic compounds & their unique	
		-
U nit No.	Content	Contact
··· •. ··		hours
U nit I	Reactive Intermediates & Rearrangements	10
	1.1 Structure and stability of reactive intermediates , 1.1.1 Carbocations,	
	1.1.1 Carbocations, 1.1.2 Carbanions,	
	1.1.2 Carbanons, 1.1.3 Free radicals,	
	1.1.4 Carbenes,	
	1.1.5 Nitrenes,	
	1.1.6 Benzyne.	
	1.2 Rearrangements -General mechanistic considerations-	
	nature of migration, migratory aptitude, memory effects. A	
	detailed study of the following rearrangements:	
	1.2.1 Beckmann rearrangement,	
	1.2.2 Hofmann rearrangement, 1.2.3 Pinacol Pinacolone	
	1.2.4 Wolf rearrangement,	
	1.2.5 Baeyer Villager rearrangement,	
	1.2.6 Semipinacole rearrangment	
	1.2.7 Favorskii rearrangement,	
	1.2.8 Benzil-Benzillic acid rearmaments,	
	1.2.9 Claisen rearrangements,	
	1.2.10 Cope Rearrangements,	
	1.2.11 Curtius rearrangement	
	1.2.12 Wagner Meerwein rearrangement	
	1.3 Reactions:	
	1.3.1 Chichibabin,	
	1.3.2 Simon-Smith,	
	1.3.3 Mc-Murry,	
	1.3.4 Suzuki coupling reaction.	
	1.3.5 Wolf Kirshner rduction	
	1.3.6 Appel reaction	
	1.3.7 Houben-Hoesch reaction	
	1.3.8 Sommelet reaction,	
	1.3.9 Witting reaction	
	1.3.10 Michael addition reaction	

TT		10
Unit II	Chemistry of Oxidative and Reductive Reagents	10
	2.1 Oxidizing agents:	
	2.1.1 TEMPO,	
	2.1.2 CAN, Ceric Ammonium Nitrate	
	2.1.3 PCC, Pyridinium chlorochromate	
	2.1.4 KMnO ₄ Potassium per magnet	
	2.1.5 O ₃ , Ozone	
	2.1.6 Swern oxidation,	
	2.1.7 SeO ₂ , Selenium Dioxide	
	$2.1.8 \text{ Pb} (\text{Ac})_4$,Lead tetra acetate	
	2.1.9 Pd-C, Palladium catalyst	
	$2.1.10 \operatorname{RuO}_4$, Ruthenium tetroxide	
	$2.1.11 \text{ OsO}_4$, Osmium tetra oxide	
	2.1.12 m-CPBA,m- chloro per benzoic acid	
	2.1.13 MnO ₂ , Manganese dioxide	
	2.1.14 NaIO ₄ , Sodium per iodate	
	$2.1.15 \text{ CrO}_3$ - Chromium trioxide,	
	2.1.16 DDQ, 2.3 dichloro- 5,6 dicyano- 1,4 Benzoquinone	
	2.1.17 PDC, Pyridinium Dichloro chromate	
	2.2 Reducing agents:	
	2.2.1 Boranes and hydroboration reactions,	
	2.2.2 MPV reduction	
	2.2.3 Reduction with $H_2/Pd-C$,	
	2.2.4 Raney-Ni,	
	$2.2.5 \text{ NaBH}_3\text{CN},$	
	2.2.6 Wilkinson's catalyst,	
	2.2.7 DIBAL	
	2.2.8 Wolff-Kishner reduction,	
	2.2.9 Birch reduction,	
	2.2.10 Clemenson's condensation reaction	
Unit III	Importance of Hydroboration, and Enamines Reactions	15
	3.1 Hydroboration:	15
	3.1.1 Importance of hydroboration reaction	
	3.1.2 Various hydro borating agents their Mechanism	
	3.1.3 Synthetic Applications	
	i) 9- BBN,	
	ii)Thexyl borane,	
	iii)Diisamyl borane	
	3.1.4 Application of hydroboration reactions	
	3.2 Enamines	
	3.2.1 Importance of Enamines reaction	
	3.2.2 Formation of enamines.	
	3.2.3 Reactivity of enamines.	
	3.2.4 Application of Enamines reactions	
Unit IV	Reactions of Organometallics and Ylides	15
	4.1 Addition of	13
	4.1.1 Grignard Reagent,	
	4.1.2 Organo lithium,	

- 4.1.3 Organo Zinc,
- 4.1.4 Organo Copper reagents to Carbonyl unsaturated Carbonyl compounds.
- 4.2 Reactions of
- 4.2.1 Phosphorous,
- 4.2.2 Nitrogen
- 4.2.3 Sulphur Ylids.

Course outcomes: After completion of the course students will be able to...

- 1. Assemble reactive intermediate with their reactivities.
- 2. Investigate the use of oxidizing and reducing agents in organic synthesis.
- 3. Illustrate the use of hydroboration in synthesis of complexes.
- 4. Explore the types of organometallic reagents, including Grignard's reagents, organo lithium etc.

- 1. J. Clayden, N. Greeves, S. Warren, Organic chemistry 6th edition, Oxford University, Press.
- 2. D. Nasipuri, 1994, Stereochemistry of organic compounds, New Delhi, New Age International.
- 3. March. J, 2007, Advanced Organic chemistry, 6th edition, McGraw Hill.
- 4. Sykes. Peter, 1985, Guide book to mechanism in organic chemistry 6th edition, US orients Longmans.
- 5. Morrisons. R. T, & Boyd. R. N, 2002, Organic chemistry 7th edition, Prentice Hall Ashok Kghosh.
- 6. Eliel. E. L, 1962, Stereochemistry of carbon compounds,1st edition, McGraw Hill.

Credits 4	M.Sc. I Drug Chemistry Semester II Discipline Specific Course (DSC) Mandatory	Contac t Hours 60
	Paper Title: Bioinorganic Chemistry	
ourse obi	ectives: Students should be able to	
	ore the roles & functions of metal ions in various biological processe	S
-	erstand the fundamental principles of inorganic chemistry relevant to	
deliv	· · · ·	0
	compressive knowledge of the structural features of metalloenzymes	8
	y the biochemical & physiological mechanism through which inorgan	
com	pounds exerts therapeutic effects.	
	-	
nit No.	Content	Contact
		hours
nit I	Introduction to Bioinorganic Chemistry	15
	1.1. Introduction of bioinorganic chemistry,	
	1.2. Role of metals, metalloproteins and metalloenzymes in	
	living system.	
	1.3. Principles of coordination chemistry related to	
	bioinorganic chemistry research and protein, Nucleic acid and other metal-bonding biomolecules.	
	1.4. Thermodynamic aspects - HSAB concept, chelate effect	
	and Irving-William series, pKa values of coordinated	
	ligands, Tuning of redox potential, Biopolymer effects.	
	1.5. Kinetic aspects- Electron transfer reaction, Electronic	
	substitution reaction.	
	1.6. Reactions of coordinated ligands and Template effect,	
	concept of spontaneous self-assembly model compounds.	
	1.7. Biochemistry of Na, K and Ca with respect to Na/K	
	pumps, Distribution of Cationic and anionic electrolytes	
	in blood plasma and intracellular fluid, Calmodulin,	
	Ionophores natural and synthetic application of	
	Ionophores and Ca in blood Coagulation.	
	1.8. Biochemistry of following elements: a) Iron: Ferritin,	
	Transferrin, Ferredoxin, Rubredoxin, Porphyrin-based	
	system b) Magnesium: Photosystem I c) Manganese: Photosystem II	
	Thotosystem II	
nit II	Inorganic Chemistry in Drug Delivery	15
	2.1. Importance of inorganic chemistry in pharmaceuticals,	
	2.2. Traditional drug delivery methods,	
	2.3. Metal-based drugs: Platinum base anticancer drug e.g.	
	cisplatin, gold compounds in rheumatoid arthritis	
	treatment, other metal-based therapeutics	
	2.4. Inorganic nanoparticles in Drug delivery: types of	
	nanoparticles e.g. gold, silver, Iron oxides.	
	2.5. Synthesis & functionalization of nanoparticles	
	2.6. Mechanism of drug loading and release.	
	2.7. Targeted drug delivery using inorganic nanoparticles:	
	active vs passive targeting, surface modification for	

	 targeted delivery 2.8. Toxicological consideration, Biocompatibility of metal based drugs and nanoparticles. 2.9. Imaging and diagnostics applications. 	
Unit III	Metalloenzymes	15
Unit III	Metalloenzymes Introduction to Metalloenzymes: 3.1. Definition and classification of metalloenzymes. 3.2. Importance of metal ions in biological systems. 3.3. Historical perspective and key discoveries. Metal Cofactors in Enzymes: 3.4. Types of metal ions commonly found in metalloenzymes (e.g., transition metals, alkali, and alkaline earth metals). 3.5. Roles of metal ions in enzyme structure, stability, and function. 3.6. Examples of metalloenzyme families (e.g., metalloproteases, metallohydrolases, metallooxidases). Metal Binding Sites: 3.7. Coordination chemistry of metal ions in enzymes. 3.8. Ligands and coordination geometries around metal ions. 3.9. Structural determination techniques (e.g., X-ray crystallography, NMR spectroscopy) for metalloenzyme complexes. Catalytic Mechanisms: 3.10. Roles of metal ions in enzyme catalysis	15
	 3.11. Proton transfer, substrate binding, and activation mechanisms. 3.12. Specific examples of metalloenzyme reactions (e.g., redox reactions, hydrolysis reactions). 	
	 3.13. Regulation and Inhibition: 3.14. Regulation of metalloenzyme activity by endogenous and exogenous factors (e.g., pH, temperature, allosteric effectors). 3.15. Mechanisms of enzyme inhibition (competitive, non-competitive, mixed inhibition) and their implications for the drug. 3.16. Biological Significance 	
Unit IV	Inorganic Compounds in Medicinal Chemistry	15
	 4.1 Importance of inorganic compounds in medicinal chemistry 4.2 solubility, nature, pharmacodynamics, mode of actions, metabolism and side effects of following compounds: 4.2.1 Lithium carbonate 4.2.2 Calcium gluconate 4.2.3 Sodium Benzoate 4.2.4 Sodium bicarbonate 	

- 4.2.5 magnesium hydroxide
- 4.2.6 Cis-platin
- 4.2.7 Boric acid
- 4.2.8 Potash Alum
- 4.2.9 Ferrous Sulphate
- 4.2.10 Zinc Sulphate

Course Outcomes: After completion of the course students will be able to...

- 1. Analyse case studies of clinical approved metal-based drugs.
- 2. Examine the interaction between inorganic compounds and biological systems.
- 3. Apply principles learn to the development of new therapeutic agents targeting metalloenzymes.
- 4. Evaluate relationship between chemical structures of inorganic compounds and their pharmacological activities.

- 1. Inorganic chemistry by Gary L. Miessler and Paul J, Fischer.
- 2. Shrivar and Atkins Inorganic chemistry, Fifth edition, Oxford, 2010.
- 3. Wells F. 1984, Structural Inorganic chemistry Oxford University, Press.
- 4. Datta. R. L, & Syamal, 2007, Elements of magneto chemistry, 2nd edition east west press private limited.
- 5. Cotton. A, Wilkinson's. R. G, 2021, Advanced Inorganic chemistry, Wiley publication.

Credits 2	M.Sc. I Drug Chemistry Semester II Discipline Specific Elective (DSE) Elective Paper Title: Physicochemical Theories and Equations (MDCT- 424 E I)	Contact Hours 30
	ives: Students should be able to Pauli's Exclusion Principle.	
-	faxwell-Boltzmann (MB) distribution law.	
	and colloidal Systems.	
4. Study o	f different electrodes.	
Unit No.	Content	Contact hours
Unit I	Quantum Chemistry	8
	1.1. Introduction: Wave-particle duality of matter	0
	1.2. De Broglie's hypothesis, Uncertainty principle,	
	Schrodinger equation	
	1.3. Operators: algebra of operators, linear operator,	
	commutator, angular momentum operator, ladder	
	operator and operator-related theory	
	1.4. Solutions of the wave equation for a free particle	
	and particle in a box problem	
	1.5. Transition dipole moment integral and selection	
	rule	
	1.6. Pauli Exclusion Principle	
	1.7. Spectroscopic term symbols.	
Unit II	Statistical Thermodynamics	7
	2.1. Ensembles, ensemble average and time average of	
	property.	
	2.2. Statistical equilibrium, thermodynamic probability	
	2.3. Maxwell-Boltzmann (MB) distribution law.	
	2.4. Partition function and its significance.	
	2.5. Rotational, translational, vibrational and electronic	
	partition functions.	
	2.6. Thermodynamic probability and entropy:	
	Boltzmann–Planck equation	
	2.7. Relationship between partition function and	
	thermodynamic properties.	
Unit III	Colloids and surface phenomena	8
	3.1. Colloidal Systems-Sols, Lyophilic and lyophobic	
	sols, properties of sols, coagulation.	
	3.2. Sols of surface-active reagents, surface tension and	
	surfactants	
	3.3. Electrical phenomena at interfaces including	
	electro-kinetic effects, micelles, reverse micelles,	
	solubilization.	
	3.4. Thermodynamics of micellization, critical micelle	
	concentration, factors affecting critical micelle	

	determination 3.5. Micellar catalysis.	
	3.6. Adsorption, adsorption isotherms, methods for determining surface structure and composition3.7. BET equation, surface area determination3.8. Gibbs adsorption equation and its verification.	
	3.9. Application of photoelectron spectroscopy, ESCA, and Auger spectroscopy to the study of surfaces.3.10. Numerical Problems.	
J nit IV	Electrochemistry	07`
 Explain Differen Explore 	 4.1 Activity and Activity coefficients: forms of activity coefficients and their interrelationship 4.2 Types of electrodes, Determination of activity coefficients of an electrolyte using concentration cells, instability constant of silver ammonia complex. 4.3 Acid and alkaline storage batteries, abnormal ionic conductance of hydroxyl and hydrogen ions. 4.4 Electro kinetic phenomena: Electrical double lever, theories of double layer-Helmholtz-Perrin theory, Gouy and Chapman theory, Stern theory. 4.5 Electro-capillary phenomena, electro- capillary curve. 4.6 Electro-osmosis, electrophoreses. es: After completion of the course students will be able to conditions for acceptable wave functions and its interpretation tiate partition function and thermodynamic properties. Micellar catalysis. the Streaming and Sedimentation potentials. 	
 S. Glass A. K. Cl W. Kauz Gurdeep 	tkins, 2002 Physical Chemistry 7 th edition,xford University I tone and Nostrand D. Van. 1965, Textbook of Physical Chen handra. Tata McGraw-Hill 1988 Introductory Quantum Chen zmann Quantum Chemistry, Academic Press. Raj Advanced Physical Chemistry, Goel Publishing House tone, D. Van Nostrand 1965 Electrochemistry,	nistry

Credits 2	M.Sc. I Drug Chemistry Semester II Discipline Specific Elective (DSE) Elective Paper Title: Advanced Analytical Techniques (MDCT-424 E-II)	Contac t Hours 30
 Und Lean Stud 	Jectives: Students should be able to lerstand the concepts of preparative HPLC. rn different techniques of chromatography. dy the capillary electrophoresis. ssify the instrumentation of mass spectrometry.	
	 High-Performance Liquid Chromatography 1.1. Principle, instrumentation, pharmaceutical applications, 1.2. Peak shapes, capacity factor, selectivity, plate number, plate height, resolution, band broadening, pumps, injector, detectors, columns, column problems, gradient HPLC, 1.3. HPLC solvents, troubleshooting, sample preparation, method development, 1.4. New developments in HPLC-role and principles of ultra, nano liquid chromatography in pharmaceutical analysis. Immobilized polysaccharide 1.5. CSP"s: Advancement in enantiomeric separations, revised phase chiral method development and HILIC approaches. 1.6. HPLC in Chiral analysis of pharmaceuticals. 1.7. Preparative HPLC, practical aspects of preparative HPLC. 	8
Unit II	Bio-Chromatography2.1. Size exclusion chromatography2.2. Ion-exchange chromatography2.3. Ion pair chromatography2.4. Affinity chromatography general principles, stationary phases, and mobile phases.2.5. Gas chromatography: Principles, instrumentation, derivatization, headspace sampling, columns for GC, detectors, quantification.	07
Unit III	 Super Critical Fluid Chromatography 3.1. Supercritical fluid chromatography: Principles, instrumentation, pharmaceutical applications. 3.2. Capillary electrophoresis: Overview of CE in pharmaceutical analysis, basic configuration, CE characteristics, principles of CE, methods and modes of CE. 3.3. General considerations and method development in CE, Crown ethers as buffer additives in capillary electrophoresis. CE-MS hyphenation. 	07
Unit IV	Mass Spectrometry 4.1 Mass spectrometry: Principle, theory, instrumentation of mass spectrometry. 4.2 Different types of ionization like electron impact, chemical,	08

fiel	d,	FAB	and	MALD	, APCI,	ESI,	APPI	mass
frag	gme	ntation	and	its rules,	metastable	ions,	isotopic	peaks
and	l apj	plicatio	ns of	mass spe	ctrometry.			

4.3 LC-MS hyphenation and DART MS analysis.

4.4 Mass analyzers (Quadrupole, Time of flight, FT-ICR, ion trap and Orbitrap) instruments.

Course outcomes: After completion of the course students will be able to...

- 1. Explain the principle of HPLC.
- 2. Acquire the knowledge about chromatography.
- 3. Discovered method development in CE.
- 4. Predict the application of mass spectrometry.

- 1. Robert M. Silverstein; 2005, Spectrometric identification of organic compounds; 6th edition John Wiley & sons, Inc.
- 2. Jag Mohan; 2004, Organic spectroscopy principles & applications 2nd edn, Norosa publishing houses,
- P.S. Kalsi; 2004, Spectroscopy of organic compounds; 5th Edn, New age international Publishers
- 4. William Kemp; 2004, Organic Spectroscopy, 3rd edition, Palgrave.
- 5. Donald L. Pavia; Garry M. Lampman; George S. Kirz: 2004, Introduction to spectroscopy, 3rd edition, Harcourt College Publishers.

Credits	4
CICALO	

M.Sc. Drug Chemistry Semester II MDCT-425: Research Project (RP)

1. Working hours are same as practical of project length should be sufficient.

2. Project report must be written systematically and presented in bound form: The project will consist of name page, certificate, content, summary of project (2-3 page) followed by introduction (4 to 7 pages), literature survey (4-7) pages (recently published about 30 papers must be included), experimental techniques, results, discussion, conclusions, Appendix consisting of:

1) References, 2) Standard spectra / data if any, and 3) Safety precautions.

- 3. Typically, student has to present his practical work and discuss results and conclusions in details (20-30 min.) which will be followed by question-answer session (10 min).
- 4. It is open type of examination.

Credits 2	M.Sc. I Drug Chemistry Semester II MDCP-426: Lab III	Contact Hours 60
	Part A	
	1. To study Gram nature of bacterial cells in given	
	suspensions.	
	2. To observe morphology of given bacterial by negative	
	staining method.	
	3. To prepare a smear of given bacterial suspension and	
	observe the morphology of bacterial cell by	
	monochrome staining method.4. To observe antibiotic activity of given antibiotics. (any	
	4)	
	5. Preparation of antifungal ointment.	
	6. Preparation of antifungal cream.	
	7. Synthesis of quinolene	
	8. Synthesis of 1,3 pyrazole	
	9. Synthesis of 2,3 biphenyl qunoxiline	
	10. Synthesis 1,3 Azoles	
	Part B	
	1 Organia qualitativa analysis of a ternery mixture (Any	
	 Organic qualitative analysis of a ternary mixture (Any 4) 	
	2. Two-stage preparation of benzylic acid.	
	3. Synthesis of Ag (silver) NPs and its potential	
	application towards reduction of 4-nitrophenol	
	4. Synthesis of 1,2,3,4-Tetrahydrocarbazole	
	5. Preparation of Cyclohexanone oxime from	
	Cyclohexanone	
	6. Preparation of Caprolactam from Oxime by Beckmann	
	Rearrangement.	
	7. Preparation of Pyridinium chlorochromate (PCC):	
	8. Preparation of Benzaldehyde from Benzyl alcohol using PCC.	
	 Synthesis of 4-nitrotriphenylamine (NTPA). 	
	10. Base catalyzed aldol condensation using LiOH.H ₂ O as a	
	Catalyst.	
	11. Bromination of trans-stilbene using sodium bromide and	
	sodium bromate.	
	12. Benzil-benzilic acid rearrangement under solvent-free	
	condition	
	13. Solid-state synthesis of 7-hydroxy-4-methyl coumarin.	
	14. Bromination of acetanilide using ceric ammonium	
	nitrate in aqueous medium.	
	15. Green approach for preparation of benzopinacolone from bezopinacol.	
	nom bezophicol.	
eferences:		
1. Loudo	on, Gregory M., and Josephine I. Davies. 2016 Organic Chemistry H	Principles

and Mechanisms. 2nd ed. W.H. Freeman and Company.

- 2. Zubrick, James W. 2019, The Organic Chem lab survival Manual: a Students Guides to Techniques.10th ed. Wiley.
- 3. Wade, Leroy G. 2017, Organic Chemistry a Laboratory Manual. 8th ed. Pearson.
- 4. Noble, David R., and Michael B. Smith. 2014, Organic Chemistry a Laboratory Manual 3rd ed. University Science Books.
- 5. Harris, Daniel C. 2016, Quantitative Chemical Analysis. 9th ed. New York: W.H. Freeman and Company.
- 6. Benson, Harold J. 2018, Microbiological Applications: Laboratory Manual in General Microbiology. 11th ed. McGraw-Hill Education.
- Baron, Elliot J., and Patricia A. D. Stalons. Bailey & Scott's, 2020, Diagnostic Microbiology. 14th ed. Elsevier.
- Murray, Patrick R., Ken S. Rosenthal, and Michael A. Pfaller. 2020, Medical Microbiology. 9th ed. Elsevier.
- 9. Pommerville, Jeffrey C. Alcamo's, 2019, fundamentals of Microbiology: A Laboratory Manual. 11th ed. Jones & Bartlett Learning.
- 10. Cappuccino, James G., and Natalie Sherman 2022, Microbiology: A Laboratory Manual. 11th ed. Pearson.

Credits 2	M.Sc. I Drug Chemistry Semester II MDCP-427: Lab IV	Contact Hours 60
	Part A	
	 Separation and identification of amino acid mixture by 2D paper chromatography. Separation and identification of amino acid mixture by TLC. Preparation of immobilized cells of yeast cells and determination of invertase activity. Study of effect of gel concentration on immobilized enzyme activity. Isolation of cellulase producers from soil. Titration curve of glycine. Determination of the blood group of a given sample To Asses temperature stability of the enzyme. To Asses effect of activator/ inhibitor on enzyme activity. Sodium Benzoate ii) Sodium Benzoate Sodium Benzoate Magnesium hydroxide Potash Alum vi) Zinc Sulphate 	
	Part B	
	 Determination of critical micellar concentration (CMC) and ΔG of micellization of sodium Lauryl Sulphate / Detergent. To estimate the amount of NH₄Cl colorimetrically using Nesseler's Reagent. Determine the solubility of lead iodide in the presence of varying concentration of salt KCl. Determine the solubility of lead iodide in the presence of varying concentration of salt KNO₃ To determine instability constant & stoichiometry of silver ammonia complex potentiometrically. Hydrolysis of NH₄Cl or CH₃COONa or aniline hydrochloride. Study of conductometric titration of a mixture of strong acid (HCl) and weak acid (CH3COOH) against a strong 	

	 8. Determination of dissociation constants (Ka) of a dibasic acid (oxalic acid) by pH-metry 9. Study of potentiometric titration of a strong acid (HCl) against a strong base (NaOH) 10. Study of potentiometric titration of ferrous ammonium sulphate (FAS) against potassium dichromate (K₂Cr₂O₇)
	ences:
1.	Mann, F. G., and B. C. Saunders. 1960, Practical Organic Chemistry. 4 th ed.
	London: Longmans, Green and Co.
2.	Clarke, H. T. A 1956, Handbook of Qualitative Analysis and Quantitive Analysis.
	6 th ed. London: Edward Arnold.
3.	Blatt, A. Organic Synthesis: Collective Volumes. New York: Wiley, various
	volumes.
	Kitchener, J. A. 1971, Findlay's Practical Chemistry. 9 th ed. London: Macmillan.
5.	Vogel, A. I. Textbook of Inorganic Qualitative Analysis. 3 rd ed. London:
~	Longmans, Green and Co.
6.	Das, R. C., and B. Behera. 2002, Experimental Physical Chemistry. 2 nd ed. New
7	Delhi: Tata McGraw-Hill.
7.	Viswanathan, B., and P. S. Raghavan. 2006, Practical Physical Chemistry. 3 rd ed. Chennai: New Age International.
8	Athawale, V. D., and Parul Mathur. 2004, Experimental Physical Chemistry. 1 st ed.
0.	Mumbai: Himalaya Publishing House.
9	Rajbhoj, S. W., and T. K. Chondhekar. 2008, Systematic Experimental Physical
	Chemistry. 1 st ed. Pune: Vidyarthi Prakashan.
10.	Palmer, W. G. 1969 Experimental Inorganic Chemistry. 2 nd ed. London: Chapman and Hall.
11.	Schoeller, W. R., and A. R. Powell. 1958 The Analysis of Minerals and ores of the
	Rarer Elements. London: Charles Griffin and Company Limited.